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Abstract

A moment method for computing 3-D radiative transport is applied to axisymmetric


ows in thermochemical nonequilibrium. Such 
ows are representative of proposed aero-

brake missions. The method uses the P-1 approximation to reduce the governing system

of integro-di�erential equations to a coupled set of partial di�erential equations. A numer-

ical solution method for these equations given actual variations of the radiation properties

in thermochemical nonequilibrium blunt body 
ows is developed. Initial results from the

method are shown and compared to tangent slab calculations. The agreement between the

transport methods is found to be about 10 percent in the stagnation region, with the di�er-

ence increasing along the 
ank of the vehicle.
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Nomenclature

a Grid cell surface area (cm2)

B� Radiosity (W/cm2-s�1)

C Constant in time term

d Coe�cients in Gauss-Seidel formulation

G� Incident radiative intensity (W/cm2-s�1)

I� Radiative intensity (W/cm2-s�1-ster)

je
�

Emission coe�cient (W/cm3-s�1-ster)

L Local error in Gauss-Seidel iteration

n̂ Surface unit normal

~qR Radiative 
ux (W/cm2)

r Relaxation parameter

~r Position vector

Rn Residual of Eq. 18

s Path variable (cm)

T Temperature (K)

V Volume of grid cell (cm3)

x Cartesian coordinate (cm)

y Cartesian coordinate (cm)

z Cartesian coordinate (cm)

� Computational variable for incident intensity

" Surface emissivity

� Third computational coordinate direction

� Second computational coordinate direction

�0 Absorption coe�cient corrected for induced emission (1/cm)

� Cosine of angle between 
̂ and z-axis

� Frequency (1/s)
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� First computational coordinate direction

� Optical variable

! Solid angle (steradians)


̂ Direction vector

Sub- and Superscripts

i grid index in x or �-direction

I cell center index in x or �-direction

j grid index in y or �-direction

J cell center index in y or �-direction

k grid index in z or �-direction

K cell center index in z or �-direction

m medium

p Planck

R radiative

w wall

� spectral

n index of time step in iteration

Introduction

Figure 1 shows some important features of an aerobrake 
ow�eld in a planetary atmo-

sphere at the high speed typical of interplanetary 
ight. A signi�cant portion of the heating

experienced by such a blunt spacecraft can be due to radiation. The radiative heating can

therefore be a strong driver on the design of the spacecraft heatshield. This heating is pre-

dicted in two steps: �rst the radiative properties are computed at each point in the 
ow�eld;

3



then the transport of radiation to the body surface is calculated. The �rst part of the prob-

lem, for a 
ow�eld including the features of Fig. 1, was treated in Ref. 1. For the radiative

transport calculation the traditional model in a hypersonic, blunt body 
ow is the tangent

slab or plane parallel approximation.2�8 To further simplify the transport calculation, this

model is sometimes applied to the visible and infrared region only, with absorption e�ects

ignored.9;10

Recent work in aerothermodynamics9 has provided some evidence that the 1D tangent

slab approximation may not be adequate even at the stagnation point for some of the vehicle

shapes and applications under consideration for future space missions. It certainly will not

su�ce to compute radiative transport in the wake region where it is planned to locate

unshielded payloads. No 3-D transport algorithm currently in use for 
ow�eld solutions has

been identi�ed, though an e�ort toward this end is underway by Edwards et al.11.

The objective of the present work is to initiate the development of a 3-D transport

algorithm for radiative transfer in blunt body 
ow�elds. This initial work is limited to

axisymmetric forebody 
ow�elds and does not include the e�ects of 
ow�eld coupling. The

geometry is a deformed pie slice, with a cross-section like that shown in Fig. 2. Since an

exact solution of the radiative transport equations in 3-D media is not feasible because it

requires solving an excessive number of equations, an approximate method is used. The

moment method is chosen here, reducing the problem from integro-di�erential equations to

simpler partial di�erential equations. This method was originally developed for 1-D radiative

transport, but recent work has extended it to 2- and 3-D geometries with various restrictions

(see Ref. 12 and past work cited there). This paper discusses the application of the method

to the current problem, including required changes for nonequilibrium, and presents some

initial results.

Radiative Transport Theory

The complete equation of radiative transport has been derived in many standard texts.
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Neglecting transients and assuming a non-scattering medium it becomes:

dI�(s; 
̂)

ds
+ �0

�
(s)I�(s; 
̂) = je

�
(s) (1)

Since for some frequencies �0
�
can be negative in part of a nonequilibrium 
ow,1 it will

pass through zero somewhere in the domain. The usual procedure of dividing by �0
�
to

transform this equation to an optical variable would therefore introduce a singularity. For

this work, then, Eq. 1 will be left in terms of the physical coordinate.

Equation 1 applies at each frequency, �, and for each direction, 
̂. A formal solution

can be written using an integrating factor. The radiative transport can then be computed

numerically for a �nite number of frequency points and directions. Some method of select-

ing appropriate frequencies at which to compute the radiative properties je
�
and �0

�
in a

nonequilibrium 
ow must be devised. That problem was discussed in Ref. 1. For the cases

in this paper, 1066 optimized frequency points were used to compute the radiation occurring

between 0.31 and 16.5 eV.

Plane-Parallel Medium

A common approximation for solving the radiative transport equation is to assume that

the properties of the medium through which the radiation travels vary in only one direction.

This situation is illustrated by the inset in Fig. 2. It may be a reasonable assumption in the

stagnation region of a 
ow�eld, where gradients are mainly in the normal direction. In this

case s and 
̂ are replaced by z and � (the cosine of the angle between 
̂ and the z-axis).

The derivative d=ds then becomes �@=@z. To accommodate the boundary conditions in this

case, I is split into forward (� >0) and backward (� �0) components. The formal solution

for each can be written:

I+
�
(z; �) = I+

�
(0; �) exp

�
�

Z
z

0
�0
�
(s00; �)=�ds00

�

+

Z
z

0
je
�
(s0; �)=� exp

�
�

Z
z

s0

�0
�
(s00; �)=�ds00

�
ds0 (2)

I�
�
(z; �) = I�

�
(z0; �) exp

�
�

Z
z

z0

�0
�
(s00; �)=�ds00

�
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+

Z
z

z0

je
�
(s0; �)=� exp

�
�

Z
z

s
0

�0
�
(s00; �)=�ds00

�
ds0 (3)

The z = 0 boundary is the vehicle surface, which is assumed to emit radiation according

to Planck's function at the wall temperature Tw. The z = z0 boundary is the freestream

gas ahead of the vehicle which is assumed not to emit radiation. Along the surface normal

(� = �1), and introducing the optical variable:

��(z) =
Z

z

0
�0
�
(s0)ds0 (4)

these then become:

I+
�
(z; 1) = I�p(Tw)e

���(z) +

Z
z

0
je
�
(s0)e��(s

0)���(z)ds0 (5)

I�
�
(z;�1) =

Z
z0

z

je
�
(s0)e��(z)���(s

0)ds0 (6)

To obtain the radiative 
ux in an absorbing, plane parallel medium it is easy to show

that, if the exponential approximation is used to replace the exponential integrals, the above

equations give the radiative 
ux, q� = q+
�
+ q�

�
, when �� is replaced by 2�� and a factor of

� is added. The divergence of the radiative 
ux is obtained by di�erentiating this equation

with respect to z, then integrating over the complete spectral range. The di�erentiation

can be done analytically, or numerically from the solution for q�(z). The latter approach

has been implemented here, following Nicolet.2 The analytical approach requires a numerical

di�erentiation of the integrand and would be of similar accuracy.

Numerical Solution

The integrals in Eqs. 4-6 require some care. Because �0
�
can be negative in some

regions,1 the log-linear variation assumed by Nicolet2 in the RAD/EQUIL code cannot be

used. Examination of �0
�
pro�les suggests that a piecewise linear approximation is acceptable.

For the intensity integrals, the 
ow�eld grid spacing may be such that for strongly

absorbing spectral regions �z is not small with respect to variations in the integrand. To

integrate accurately, examination of �� pro�les suggests a piecewise linear approximation be
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used. Setting �� = ais + bi in each grid interval and approximating je
�
by its average at the

two ends of the interval, the integral over the exponential term can be carried out. (The

obvious approach of also setting je
�
= cis+ di has numerical problems for small �� , resulting

from terms which go to 0=0.)

Three-Dimensional Medium

When the tangent slab approximation is invalid, the directional variation of the radi-

ation must be accounted for. The Modi�ed Di�erential Approximation (MDA) of Modest12

is reported to give results of excellent accuracy for all optical conditions by splitting the

radiative intensity into medium and wall components. The smoothly varying medium in-

tensity can then be solved using the P-1 approximation. Adapting Modest's derivation for

the current non-gray, nonscattering, and nonequilibrium 
ow gives the following governing

equation for the medium intensity (this result is equivalent to Eq. 1 when I is split):

5 � (
̂I�m) = je
�
� �0

�
I�m(~r; 
̂) (7)

Taking the zeroth and �rst moments of this equation and integrating over 4� steradians

yields the applicable governing equations for the incident intensity, G� , and radiative 
ux,

~q�, of the medium:

5 �~q�m = 4�je
�
� �0

�
G�m

(8)

5G�m
= �3�0

�
~q�m (9)

where the P-1 approximation has been used to simplify Eq. 9.

To obtain the complete radiative transport solution, the contribution to ~q from the walls

must also be considered. This is obtained from the following integral:

~q�w =
1

�

Z
4�
B�[~r

0(!)]e��� 
̂d! (10)

where the wall radiosity, B� , is given by the sum of emission at the wall temperature Tw, and

re
ection of radiation emanating from other wall surfaces. In Modest's analysis, the wall
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re
ection is assumed to be di�use. The treatment of specularly re
ecting wall surfaces adds

considerably to the complexity of the problem and will not be addressed here. In any case,

for a forebody 
ow�eld the wall surface is convex so that no re
ection of radiation emitted

by the wall can occur (this simpli�cation will not always apply in wake 
ows and so will be

removed in future work on this method). Then the radiosity is just the emission from the

wall:

B�(~r) = "��I�p[Tw(~r)] (11)

This contribution to the radiative 
ux must be computed for each grid cell in the medium

by integration over all the wall surface elements to which it has a line of sight.

If it is further assumed that the wall is cold, or that it makes a negligible contribution,

then ~qw � 0, and only the medium contribution need be considered. (Note that a cold

black wall is assumed in many of the tangent slab transport analyses, since this gives the

radiation incident on the wall. For generic studies in which the wall properties are unde�ned,

this is a meaningful quantity for comparison.) This approximation is not unreasonable for

aeroassist 
ow�elds, since heating rates are relatively low in the upper atmosphere and the

wall temperature will accordingly be relatively low during much of the 
ight. In fact, at the

maximum wall temperature for Shuttle-type reusable thermal protection systems, the peak

of the black body emission spectrum occurs at about 0.75 eV. For lower temperatures, the

black body peak shifts to even lower energies. In this low energy spectral region the gas is

quite transparent to radiation except in isolated atomic lines (see Fig. 3) so the wall can

have little e�ect on the divergence of the radiative 
ux. In that case, 5 � ~qR � 5 � ~qm and is

obtained by integrating Eq. 8 over frequency. Note that unlike the plane-parallel medium,

numerical di�erentiation is not required here.

Numerical Solution

The Computational Fluid Dynamics (CFD) algorithm thus far used in this radiation

study is a �nite volume algorithm (the LAURA code of Gno�o13). To obtain a form of the
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governing equations suitable for a �nite-volume solution, Eq. 8 can be substituted in the

divergence of Eq. 9 to obtain:

~5 �

 
1

�0
�

~5G�

!
= 3�0

�
G� � 12�je

�
(12)

In the �nite volume approach, this is now to be integrated over the volume of a single grid

cell, V . By application of Gauss' theorem (the divergence theorem), the volume integral on

the left-hand-side can be transformed to a surface integral. Then

Z Z
a

 
1

�0
�

~5G� � n̂

!
da =

Z
V

(3�0
�
G� � 12�je

�
) dV (13)

The integral on the left-hand-side is performed by assuming that the absorption coe�cient

�0
�
and the gradient of the incident intensity ~5G� are constant on each cell face, leaving a

summation over the six faces of the cell. On the right-hand-side, values at the cell center are

used. The notation for the cell geometry is that of Gno�o14, where I, J , and K denote cell

centers, and i, j, and k denote cell faces. Then

" 
1

�0
�

~5G�

!
i+1

� ~ai+1 �

 
1

�0
�

~5G�

!
i

� ~ai

#
J;K

+

2
4
 
1

�0
�

~5G�

!
j+1

� ~aj+1 �

 
1

�0
�

~5G�

!
j

� ~aj

3
5
I;K

+

" 
1

�0
�

~5G�

!
k+1

� ~ak+1 �

 
1

�0
�

~5G�

!
k

� ~ak

#
I;J

= V (3�0
�
G� � 12�je

�
)
I;J;K

(14)

The remainder of the development will be restricted to axisymmetric 
ows, in which the

second term in square brackets is zero. Cylindrical coordinates are not used, since the

eventual goal is treatment of 3D 
ows.

For the nongray gas found in a shock layer, the radiative properties �0
�
and je

�
vary

over orders of magnitude at various locations and frequencies. To minimize the numerical

di�culties that this variation can introduce, some kind of normalization is desired. De�ne

j
�
=

P
cells

je
�

N
cells

(15)
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and

�� =

P
cells

j�0
�
j

Ncells
(16)

Both these quantities are constant for each frequency considered, and provide a measure of

the approximate magnitude of the emission and absorption at that frequency. Figure 3 is an

example of the variation of these average coe�cients and demonstrates the wide variation

in radiation properties for di�erent radiative frequencies in a single 
ow�eld. To use these

normalizing quantities, Eq. 14 is divided by j
�
on both sides, and terms containing G� are

multiplied by 1 in the form of ��=��. A new variable �� = G�=(j���) is de�ned. Eq. 14 then

becomes: " 
��

�0
�

~5��

!
i+1

� ~ai+1 �

 
��

�0
�

~5��

!
i

� ~ai

#
K

+

" 
��

�0
�

~5��

!
k+1

� ~ak+1 �

 
��

�0
�

~5��

!
k

� ~ak

#
I

= V

 
3���

0

�
�� � 12�

je
�

j
�

!
I;K

(17)

This formulation reduces the variation of the unknown and coe�cients of the equation rel-

ative to Eq. 14, making the numerical solution easier. To further normalize the coe�cients,

this equation is multiplied on both sides by �0
�(I;K)

.

The 
ow�eld grid is not orthogonal, so the expression of the gradient in �nite di�er-

ences requires a transformation to an orthogonal computational domain as shown in Fig. 4.

Transforming to the new (�, �) domain, and expanding the gradient of �� in second order

central di�erences allows Eq. 17 to be expressed as:

d1��I+1;K+1
+ d2��I+1;K + d3��I+1;K�1

+d4��I;K+1
+ d5��I;K + d6��I;K�1

+d7��I�1;K+1
+ d8��I�1;K

+ d9��I�1;K�1

= �12�VI;K
je
�I;K

j
�

(18)

where the coe�cients di are combinations of the geometry and the radiative properties

resulting from collecting terms after Eq. 17 is di�erenced.
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Equation 18 is a matrix equation for the unknown ��I;K of the general form Ax = b.

The numerical solution of this type of equation can be obtained by a number of standard

methods. The line Gauss-Seidel algorithm has been selected and applied along each normal

grid line to capture the dominant gradients in the radiative properties. This algorithm

results in a tridiagonal matrix equation to be solved for each normal grid line. The solution

of such an equation can be obtained using the Thomas algorithm15 with speci�cation of

appropriate boundary conditions as discussed below. To ensure convergence for this problem

underrelaxation is necessary. It is introduced by de�ning a corrected value for the update of

�� at the n+ 1 time level as

�n+1
0

�I;K
= �n

�I;K
+ r(�n+1

�I;K
� �n

�I;K
) = (1� r)�n

�I;K
+ r�n+1

�I;K
(19)

where r is the relaxation parameter and is less than one for underrelaxation. The selection

of r is discussed below. �n+1
�I;K

is substituted from Eq. 18 to obtain a new form of the matrix

equation for �n+1
0

�I;K
. Additional details of the derivation and the form of the coe�cients di

are given in Ref. 16.

So far this development has ignored the singularity introduced in Eq. 12 with the division

by �0
�
. Two problems arise in this connection. The �rst is a loss in diagonal dominance in

Eq. 18 resulting from the change in sign of �0
�
across a cell face. The second is the singularity

itself.

To obtain convergence at these frequencies, a time variation term, C@G�=@t, is intro-

duced on the left-hand-side of Eq. 12. At the converged steady state this term is zero,

but during the iterative solution it adds an additional term to the diagonal coe�cient:

d5 ) d5 + C��. The term C���
n

�I;K
also appears on the right-hand-side. The variable C,

which is related to a time step, can then be chosen such that diagonal dominance is recovered.

To avoid the singularity in Eq. 12, note from the original equation, Eq. 9, that when

�0
�
= 0, 5G� = 0. To enforce this in the numerical solution, �0

�
= 0 is assumed to occur at

the cell face. The appropriate terms from Eq. 17 are then dropped for cell faces where �0
�

crosses zero.

11



This approach allows solutions to be obtained for all frequencies with a single algorithm:

C is set to zero when �0
�
is everywhere positive, and to a value ensuring diagonal dominance

when it is not; and the appropriate terms in the coe�cients di are set to zero where �0
�

crosses zero. The choice of the value of C is discussed below.

Boundary Conditions

Boundary conditions in the 3-D medium are illustrated in Fig. 2. The treatment of

each is discussed below.

Re
ection boundary conditions should apply at the symmetry boundary. This boundary

is a singularity in the computational grid, however, where one surface of a grid cell has zero

area. Referring back to Eq. 17, this means the second term on the �rst line disappears. The

remaining �-derivative terms at the I grid line are replaced by �rst order forward di�erences

to avoid di�erencing across the singularity.17 The appropriate form of the coe�cients di is

given in Ref. 16.

For the medium only intensity, the wall boundary behaves as a cold wall. The Marshak

cold wall boundary condition for the P-1 method is:

2

�
2

"�
� 1

�
~q� � n̂+G� = 0 (20)

Replacing ~q� in this equation using Eq. 9 leads to a di�erential equation in the single unknown

G� , which can be transformed to an equation for �� . This equation can be di�erenced at

the wall boundary by recognizing that the grid lines are normal to the body surface. The

~5�� � n̂ term is then simply the gradient of �� along the grid lines. This di�erence is best

expressed in physical coordinates with a �rst order forward scheme, and can be incorporated

in the Gauss-Seidel solution scheme with underrelaxation. The details are given in Ref. 16.

Along the out
ow \boundary", the value of �� must be approximated. This is an

arbitrary computational boundary through which radiating gas and radiation (inwardly and

outwardly directed) both pass. The 
ow�eld boundary condition used in LAURA is a zeroth

order extrapolation (i.e., the derivatives of the 
ow variables are assumed to be zero across

12



this boundary). This boundary condition is known to provide better stability for CFD

computations than other possible formulations, and so might be adopted for the radiation

method. Several alternatives are possible at this boundary, such as a constant slope of

��(I;K) or constant radiation intensity. These various boundary conditions are found to

have only a local e�ect on the solution. The selection of the \correct" boundary condition

is hampered by grid distortion and a lack of resolution in the shoulder area of currently

available CFD solutions. The choice is therefore made on the basis of stability rather than

accuracy. The boundary condition that is applied in this work is

G�(out
ow boundary) = 0 (21)

Though incorrect, this condition enhances stability while providing the correct trend of a

fall-o� in G� around the shoulder. Future work with complete 
ow�elds will move the out
ow

boundary downstream in the wake, where its in
uence on the 
ow�eld will be much smaller.

The freestream \boundary" is transparent and only outgoing radiation is considered.

The freestream is assumed to be non-emitting. With these assumptions, this boundary can

be modeled as a cold wall with complete absorption ("� = 1:0 in Eq. 20). Di�erencing using a

central di�erence for the �-direction and a �rst-order backward di�erence for the �-direction

allows this equation to be written in the line Gauss-Seidel form. Underrelaxation can then

be added as well. The �nal expression is reported in Ref. 16.

For the freestream boundary at the axis of symmetry, a re
ection boundary condition

for G�I�1;F
is used. Using a �rst order forward di�erence at this point was found to lead to

nonphysical results.

Radiative Heat Flux to Wall

The radiative 
ux to the wall due to emission in the medium can be found from solving

Eq. 9 for ~q�. The value of G� is obtained from the solution of the �nite volume problem, �� ,

multiplied by the normalizing factor (j
�
��). To obtain the 
ux directed to the wall, the dot

product of ~q� with the wall-directed surface normal is required. Again recalling that the grid

13



lines are normal to the body surface, the gradient of G� can be expressed with a one-sided

di�erence along the normal grid lines. As above, this is best done in physical coordinates:

q�w = �
1

3�0
�I;w

 
dG�

dn

!
w

(22)

The total heat 
ux to the wall at each grid location is then obtained by a numerical inte-

gration of Eq. 22 over the spectral range considered.

Convergence Criterion

The numerical solution of this set of di�erence equations requires the selection of an

appropriate criterion to test for convergence. Because the radiative properties vary over

many orders of magnitude at a single frequency, the usual error criteria must be modi�ed.

A local error function is de�ned as:

LI;K =
jRnj

mean(�n
�
)

(23)

where Rn is the residual of the di�erence equation, Eq. 18. The mean of �n
�
is the average

of the minimum and maximum values of �n
�I;K

for all I and K on the radiation grid. (For

frequencies where �0
�
changes sign, it is de�ned as half the maximum value of �n

�I;K
.) This

de�nition reduces the error in regions where �n
�I;K

is small, relative to the error that would

be computed from the residual alone. Though the solution may not be completely converged

at locations where �n
�I;K

is small, these locations contribute little to the coupling with the


ow�eld. Therefore, the lack of complete convergence at these locations is deemed acceptable

to reduce the computation time.

Each frequency is converged individually, since the rate of convergence depends on the

magnitude of the optical depth and varies widely for di�erent frequencies. A typical conver-

gence history for a single frequency is shown in Fig. 5. For other frequencies convergence

requires 50 to several hundred iterations, and for a few frequencies even thousands of itera-

tions.
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Selection of Solution Parameters: r, C

The relaxation parameter required to obtain a stable solution varies from frequency to

frequency. No simple dependence of r on any radiative property has so far been discovered.

The value r=0.5 has therefore been selected as a compromise, since it is found to provide

generally good stability and convergence rates for all frequencies.

The constant C in the time term added for frequencies with �0
�
crossing zero must be

selected to recover diagonal dominance. Since C is related to the inverse of the time step,

it must be kept as small as possible or the solution does not progress. To minimize the

additional logic involved, an initial guess is made which will set d5 = 1:1d5. C is then

successively doubled if tests indicate lack of diagonal dominance.

It should be noted that the objective of this study is to demonstrate the feasibility of

the method; not to optimize the numerical solution. Further improvements to this logic are

almost surely possible and will be pursued as the method is used.

Results and Discussion

The LORAN radiation method1 is used to obtain all the radiation predictions shown in

this paper. Infrared, visible, and ultraviolet radiation from 0.31 to 16.5 eV is computed on an

optimized spectrum of 1066 points.1 LAURA 
ow�eld solutions provide the nonequilibrium

gas conditions. Coupling e�ects are not included in this study.

Mars Return

A 
ow�eld solution has been obtained for one of a number of possible 
ight conditions

identi�ed for the return from a mission to Mars.18 It consists of a 60o sphere cone with a

1.08 m nose radius 
ying at 80 km altitude with a velocity of 12 km/sec. Results have been

obtained for this case using both tangent slab transport and the MDA method.

Figure 6 compares the wall radiation 
ux predictions from the two transport methods.

The MDA result is found to be consistently lower than the tangent slab result. This results

from a combination of geometric e�ects and 
ow�eld property gradients. Figure 7 presents
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the ratio of the MDA to the tangent slab solution. It shows that the tangent slab solution

applies best at the stagnation point (within 6 percent of MDA), and becomes progressively

worse along the 
ank. The odd behavior at the shoulder is a result of grid problems in

the 
ow�eld solution used to obtain these results (these problems have since been �xed

in LAURA). The qualitative trends of the two methods are similar, showing the radiative


ux increasing with distance from the sphere-cone juncture. This increase is unlike the

behavior of convective heating on such a body and results because radiation is a volumetric

quantity. As suggested in Fig. 4, the stando� distance is much larger on the 
ank than at

the stagnation point of this vehicle, so the volume of radiating gas is greatly increased. The

vibrational temperature in this nonequilibrium 
ow�eld is still high in this region, so the

radiative emission is strong.

The other variable of interest for coupled 
ow�elds is the divergence of the radiative


ux in the shock layer. To compare the two transport methods, Figs. 8 and 9 show contour

plots of 5 � ~qR in the computational domain (see Fig. 4), since it is di�cult to see details in

the physical domain. For a viscous 
ow, this has the e�ect of stretching the boundary layer

region, which extends to �=�max of 0.3 to 0.4 in these plots. The position of the �rst 0.0

contour level in the boundary layer region is a�ected by di�erent gridding in the two cases,

and is not indicative of a di�erence in the solutions. The tangent slab result shown in Fig. 8

is in fact just the derivative of qR along each normal grid line, so the values at neighboring

grid lines do not in
uence each other. The localized hot spot near �=�max = 0:8 may be an

artifact of this 1-D assumption. The grid problems in the shoulder area are evident from the

distorted contours near �=�max = 1, and in fact the last grid line is not included in the MDA

solution. In all other aspects, the solutions from the two transport methods are qualitatively

and often even quantitatively similar, giving con�dence in the MDA method.

The tangent slab calculation for this case required 7 CPU minutes on an IRIS 4D/340

workstation. The MDA result took 35.8 CPU hours, or about 300 times longer. While this

is a large penalty for the slight di�erence obtained in the results, several comments can be
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made. Since the IRIS workstation has four processors, the MDA result required only about

10 hours of real elapsed time. The speedup factor that could be obtained by running the

method on the Cray is expected to be especially large, because it will allow the use of single

rather than double precision arithmetic. Finally, the MDA algorithm is in its early stages,

and signi�cant reductions in computing time will probably be obtained as the algorithm

matures. In particular, this result was obtained using a larger radiation subgrid (32 grid

points normal to the body) than was suggested in Ref. 1 in order to obtain the best results

for the evaluation of the method. Taking these factors into account, the MDA method has

potential for providing accurate heating distributions in important cases, though it may

never be used as commonly as the tangent slab method. More important, though, it can be

used in 
ow regions (such as wakes) where the tangent slab method cannot be applied.

Geosynchronous Return

Results were also obtained at a 
ight condition representative of return from a geosyn-

chronous orbit. The aerobrake con�guration is a raked cone with a blunted elliptic nose

(AFE).19 Several studies of nonequilibrium radiative heating for this con�guration have been

made.20�23 An axisymmetric LAURA 
ow�eld solution in which this geometry was modeled

by a sphere with an equivalent nose radius of 2.16 m24 was generated for this study.25 Re-

sults will only be given for the stagnation region, since the sphere quickly deviates from the

AFE geometry. The 
ow�eld models used to obtain this solution are the baseline models

of Ref. 26, including the use of the Park-87 chemical kinetics. The wall temperature was

assumed to be constant at 1750 K.

Radiation predictions were obtained for this case, again using both tangent slab and

MDA transport methods. The tangent slab calculation, including calculation of the radiation

properties �0
�
and je

�
, was completed in about 45 minutes of actual elapsed time on a Silicon

Graphics 4D/320, while the MDA result required about 4 hours of elapsed time. Including

the calculation of the radiation properties in the comparison means that the MDA method
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requires just over 5 times more CPU time than the tangent slab method for this case. It is

anticipated that the MDA run time can be further reduced as the code matures, as discussed

above.

The radiative heating rates predicted for this con�guration at 9.3 km/s and 76 km alti-

tude are shown in Fig. 10. These predictions are in the same range as earlier computations9;27

(note that di�erent nose radii have been used for these computations). The MDA prediction

is again lower than the tangent slab result, with the dip at the out
ow boundary to be

attributed to the out
ow boundary condition used, rather than any physical e�ect.

The radiative 
ux divergence for this 
ow�eld is presented in Figs. 11 and 12 for the

tangent slab and MDA transport, respectively. This time the physical domain is used, since

details in the nose region are apparent in these coordinates. The approximations inherent

in the tangent slab solution can be observed in this case as signi�cant di�erences in the

pro�les along adjacent surface normal lines. As mentioned earlier, the tangent slab method

employs a numerical di�erentiation to obtain dqR=dn while the MDA method requires no

such di�erentiation. This may add to the error already incurred by ignoring the variation

of the radiation properties in the direction parallel to the surface. This result suggests that

for some 
ow�eld cases, the MDA result might provide a smoother variation of the radiative


ux divergence when 
ow�eld coupling is included, and thus might enhance the stability of

coupled solutions.

The amount of heating to geosynchronous return vehicles resulting from radiation in

the ultraviolet (UV) portion of the spectrum has been the subject of some debate. The

distribution of radiation predicted by the LORAN method is shown in Fig. 13, using both

the tangent slab and MDA transport models. The relative importance of di�erent spectral

regions varies only slightly between the two transport methods. Both curves indicate that

just over half of the radiative heating experienced by this vehicle results from the UV portion

of the spectrum. This is a signi�cant fraction of the total. Radiation in the UV spectral

range is highly self-absorbed. If the amount of self-absorption is mispredicted only slightly,
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the wall radiative 
ux may be signi�cantly increased.

Conclusions

A Modi�ed Di�erential Approximation (MDA) method for computing 3-D radiative

transport in axisymmetric thermochemical nonequilibrium 
ows is developed. It employs the

P-1 approximation to reduce the integro-di�erential governing equation of radiative transport

to a set of partial di�erential equations. The numerical solution of these equations in a

�nite volume algorithm with real radiative property variations is discussed. The method is

assessed in forebody 
ow�elds by comparison to the commonly used tangent slab transport

approximation. The MDA method is intended for eventual use in 
ow areas, such as wakes,

where the tangent slab approximation is known to be invalid.

Predictions of the radiative heat 
ux to the forebody wall of an axisymmetric vehicle

are obtained from the two transport methods for two representative 
ow�elds. Comparison

of the results shows qualitative agreement, with wall radiative heating predictions from the

MDA method about 10 to 20 percent lower than from the tangent slab. The di�erences

increase away from the stagnation region due to geometric and 
ow�eld gradient e�ects

not accounted for in the tangent slab approximation. The variation of the divergence of

the radiative heat 
ux, which appears in the energy equation to couple the radiation and


ow�eld properties, is also examined and found in some cases to be smoother in the MDA

method. In addition to providing more accurate coupled results, this feature of the MDA

method has the potential to enhance the stability of coupled solutions.
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Figure Captions

1. Typical High Speed Aerobrake Flow�eld

2. Flow Geometry and Radiation Boundary Conditions

3. Variation of �� and j
�
for a Mars Return Flow�eld

4. Physical to Computational Domain Transformation

5. Typical Convergence History for MDA Solution

6. Wall Radiative Flux for Mars Return Case

7. Comparison of MDA and Tangent Slab Result

8. Radiative Flux Divergence in Computational Domain for Mars Return Case with

Tangent Slab Transport

9. Radiative Flux Divergence in Computational Domain for Mars Return Case with

MDA Transport

10. Wall Radiative Flux for Geosynchronous Return

11. Radiative Flux Divergence for Geosynchronous Return with Tangent Slab Transport

12. Radiative Flux Divergence for Geosynchronous Return with MDA Transport

13. Spectral Distribution of Geosynchronous Return Wall Radiative Flux
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Figure 1: Typical High Speed Aerobrake Flow�eld

24



Figure 2: Flow Geometry and Radiation Boundary Conditions
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